Motion segmentation and pose recognition with motion history gradients
نویسندگان
چکیده
منابع مشابه
Combining Skeletal Pose with Local Motion for Human Activity Recognition
Recent work in human activity recognition has focused on bottom-up approaches that rely on spatiotemporal features, both dense and sparse. In contrast, articulated motion, which naturally incorporates explicit human action information, has not been heavily studied; a fact likely due to the inherent challenge in modeling and inferring articulated human motion from video. However, recent developm...
متن کاملCompressed domain human motion recognition using motion history information
In this paper we present a system for classifying various human actions in compressed domain video framework. We introduce the notion of quantifying the motion involved, through what we call “Motion Flow History” (MFH). The encoded motion information readily available in the compressed MPEG stream is used to construct the coarse Motion History Image (MHI) and the corresponding MFH. The features...
متن کاملLinking Pose and Motion
Algorithms designed to estimate 3D pose in video sequences enforce temporal consistency but typically overlook an important source of information: The 3D pose of an object, be it rigid or articulated, has a direct influence on its direction of travel. In this paper, we use the cases of an airplane performing aerobatic maneuvers and of pedestrians walking and turning to demonstrate that this inf...
متن کاملDriving Posture Recognition by Joint Application of Motion History Image and Pyramid Histogram of Oriented Gradients
In the field of intelligent transportation system (ITS), automatic interpretation of a driver’s behavior is an urgent and challenging topic. This paper studies vision-based driving posture recognition in the human action recognition framework. A driving action dataset was prepared by a side-mounted camera looking at a driver’s left profile. The driving actions, including operating the shift lev...
متن کاملCombining Models of Pose and Dynamics for Human Motion Recognition
We present a novel method for human motion recognition. A video sequence is represented with a sparse set of spatial and spatialtemporal features by extracting static and dynamic interest points. Our model learns a set of poses along with the dynamics of the sequence. Pose models and the model of motion dynamics are represented as a constellation of static and dynamic parts, respectively. On to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Machine Vision and Applications
سال: 2002
ISSN: 0932-8092,1432-1769
DOI: 10.1007/s001380100064